Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(4): 2773-2788, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36762908

RESUMO

Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.


Assuntos
Permeabilidade da Membrana Celular , Peptídeos Cíclicos , Bicamadas Lipídicas/química , Lipídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Disponibilidade Biológica , Conformação Proteica
2.
RSC Adv ; 12(10): 5782-5796, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424539

RESUMO

Cyclic peptides have the potential to vastly extend the scope of druggable proteins and lead to new therapeutics for currently untreatable diseases. However, cyclic peptides often suffer from poor bioavailability. To uncover design principles for permeable cyclic peptides, a promising strategy is to analyze the conformational dynamics of the peptides using molecular dynamics (MD) and Markov state models (MSMs). Previous MD studies have focused on the conformational dynamics in pure aqueous or apolar environments to rationalize membrane permeability. However, during the key steps of the permeation through the membrane, cyclic peptides are exposed to interfaces between polar and apolar regions. Recent studies revealed that these interfaces constitute the free energy minima of the permeation process. Thus, a deeper understanding of the behavior of cyclic peptides at polar/apolar interfaces is desired. Here, we investigate the conformational and kinetic behavior of cyclic decapeptides at a water/chloroform interface using unbiased MD simulations and MSMs. The distinct environments at the interface alter the conformational equilibrium as well as the interconversion kinetics of cyclic peptide conformations. For peptides with low population of the permeable conformation in aqueous solution, the polar/apolar interface facilitates the interconversion to the closed conformation, which is required for membrane permeation. Comparison to unbiased MD simulations with a POPC bilayer reveals that not only the conformations but also the orientations are relevant in a membrane system. These findings allow us to propose a permeability model that includes both 'prefolding' and 'non-prefolding' cyclic peptides - an extension that can lead to new design considerations for permeable cyclic peptides.

3.
Phys Chem Chem Phys ; 24(3): 1225-1236, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935813

RESUMO

Molecular dynamics (MD) simulations are a powerful tool to follow the time evolution of biomolecular motions in atomistic resolution. However, the high computational demand of these simulations limits the timescales of motions that can be observed. To resolve this issue, so called enhanced sampling techniques are developed, which extend conventional MD algorithms to speed up the simulation process. Here, we focus on techniques that apply global biasing functions. We provide a broad overview of established enhanced sampling methods and promising new advances. As the ultimate goal is to retrieve unbiased information from biased ensembles, we also discuss benefits and limitations of common reweighting schemes. In addition to concisely summarizing critical assumptions and implications, we highlight the general application opportunities as well as uncertainties of global enhanced sampling.

4.
Chimia (Aarau) ; 75(6): 518-521, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233816

RESUMO

Proteins with large and flat binding sites as well as protein-protein interactions are considered ' undruggable ' with conventional small-molecule drugs. Cyclic peptides have been found to be capable of binding to such targets with high affinity, making this class of compounds an interesting source for possible therapeutics. However, the oftentimes poor passive membrane permeability of cyclic peptides still imposes restrictions on the applicability of cyclic peptide drugs. Here, we describe how computational methods in combination with experimental data can be used to improve our understanding of the structure-permeability relationship. Especially the conformational dynamic and chameleonic nature of cyclic peptides, which we investigate by a combination of MD simulations and kinetic modeling, is important for their ability to permeate passively through the membrane. The insights from such studies may enable the formulation of design principles for the rational design of permeable cyclic peptides.


Assuntos
Peptídeos Cíclicos , Proteínas , Permeabilidade da Membrana Celular , Simulação por Computador , Peptídeos Cíclicos/metabolismo , Permeabilidade
6.
J Chem Inf Model ; 61(2): 560-564, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33512157

RESUMO

Ensembler is a Python package that enables method prototyping using 1D and 2D model systems and allows deepening of the understanding of different molecular dynamics (MD) methods, starting from basic techniques to enhanced sampling and free-energy approaches. The ease of installing and using the package increases shareability, comparability, and reproducibility of scientific code developments. Here, we describe the implementation and usage of the package and provide an application example for free-energy calculation. The code of Ensembler is freely available on GitHub at https://github.com/rinikerlab/Ensembler.


Assuntos
Simulação de Dinâmica Molecular , Software , Reprodutibilidade dos Testes
7.
J Chem Phys ; 153(23): 234106, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33353335

RESUMO

Thermally driven processes of molecular systems include transitions of energy barriers on the microsecond timescales and higher. Sufficient sampling of such processes with molecular dynamics simulations is challenging and often requires accelerating slow transitions using external biasing potentials. Different dynamic reweighting algorithms have been proposed in the past few years to recover the unbiased kinetics from biased systems. However, it remains an open question if and how these dynamic reweighting approaches are connected. In this work, we establish the link between the two main reweighting types, i.e., path-based and energy-based reweighting. We derive a path-based correction factor for the energy-based dynamic histogram analysis method, thus connecting the previously separate reweighting types. We show that the correction factor can be used to combine the advantages of path-based and energy-based reweighting algorithms: it is integrator independent, more robust, and at the same time able to reweight time-dependent biases. We can furthermore demonstrate the relationship between two independently derived path-based reweighting algorithms. Our theoretical findings are verified on a one-dimensional four-well system. By connecting different dynamic reweighting algorithms, this work helps to clarify the strengths and limitations of the different methods and enables a more robust usage of the combined types.

8.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111592

RESUMO

Changing nutritional conditions challenge microbes and shape their evolutionary optimization. Here, we used real-time metabolomics to investigate the role of glycogen in the dynamic physiological adaptation of Escherichia coli to fluctuating nutrients following carbon starvation. After the depletion of environmental glucose, we found significant metabolic activity remaining, which was linked to rapid utilization of intracellular glycogen. Glycogen was depleted by 80% within minutes of glucose starvation and was similarly replenished within minutes of glucose availability. These fast time scales of glycogen utilization correspond to the short-term benefits that glycogen provided to cells undergoing various physiological transitions. Cells capable of utilizing glycogen exhibited shorter lag times than glycogen mutants when starved between periods of exposure to different carbon sources. The ability to utilize glycogen was also important for the transition between planktonic and biofilm lifestyles and enabled increased glucose uptake during pulses of limited glucose availability. While wild-type and mutant strains exhibited comparable growth rates in steady environments, mutants deficient in glycogen utilization grew more poorly in environments that fluctuated on minute scales between carbon availability and starvation. Taken together, these results highlight an underappreciated role of glycogen in rapidly providing carbon and energy in changing environments, thereby increasing survival and competition capabilities under fluctuating and nutrient-poor conditions.IMPORTANCE Nothing is constant in life, and microbes in particular have to adapt to frequent and rapid environmental changes. Here, we used real-time metabolomics and single-cell imaging to demonstrate that the internal storage polymer glycogen plays a crucial role in such dynamic adaptations. Glycogen is depleted within minutes of glucose starvation and similarly is replenished within minutes of glucose availability. Cells capable of utilizing glycogen exhibited shorter lag times than glycogen mutants when starved between periods of exposure to different carbon sources. While wild-type and mutant strains exhibited comparable growth rates in steady environments, mutants deficient in glycogen utilization grew more poorly in environments that fluctuated on minute scales between carbon availability and starvation. These results highlight an underappreciated role of glycogen in rapidly providing carbon and energy in changing environments, thereby increasing survival and competition capabilities under fluctuating and nutrient-poor conditions.


Assuntos
Escherichia coli/metabolismo , Glicogênio/metabolismo , Adaptação Fisiológica , Glucose/deficiência , Estresse Fisiológico
9.
Genome Biol ; 20(1): 30, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744673

RESUMO

BACKGROUND: Alternative splicing is a key regulatory mechanism in eukaryotic cells and increases the effective number of functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been studied across human tissues and in genetically diverse populations. This has identified disease-relevant splicing events, as well as associations between splicing and genomic features, including sequence composition and conservation. However, variability in splicing between single cells from the same tissue or cell type and its determinants remains poorly understood. RESULTS: We applied parallel DNA methylation and transcriptome sequencing to differentiating human induced pluripotent stem cells to characterize splicing variation (exon skipping) and its determinants. Our results show that variation in single-cell splicing can be accurately predicted based on local sequence composition and genomic features. We observe moderate but consistent contributions from local DNA methylation profiles to splicing variation across cells. A combined model that is built based on genomic features as well as DNA methylation information accurately predicts different splicing modes of individual cassette exons. These categories include the conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell variation in splicing. Finally, we identified and characterized associations between DNA methylation and splicing changes during cell differentiation. CONCLUSIONS: Our study yields new insights into alternative splicing at the single-cell level and reveals a previously underappreciated link between DNA methylation variation and splicing.


Assuntos
Processamento Alternativo , Metilação de DNA , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas , Análise de Célula Única
10.
Photochem Photobiol ; 93(3): 782-795, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500713

RESUMO

Color-tuned variants of channelrhodopsins allow for selective optogenetic manipulation of different host cell populations. Chrimson is the channelrhodopsin with the longest wavelength absorbance maximum. We characterize its photochemical properties at different pH values corresponding to two protonation states of the counterion for the protonated Schiff base. Both states will lead to a functional channel opening, but the route is different as reflected in the photochemical states observed spectroscopically. The light-induced isomerization kinetics change with the local electrostatic environment, becoming faster with the presence of an anionic counterion. The spectral effect is stronger on the ground-state energy surface. From the excited state, a bifurcated pathway leads to the electronic ground state resulting in a pronounced excitation wavelength dependence. The subsequent steps in the photocycles at pH 6 and pH 9.5 differ in the accumulation of states with a protonated and deprotonated Schiff base, respectively, that can be correlated with the open channel. Therefore, different protonation states are preserved in the open and the initial states. Chrimson's photocycle at alkaline pH shows features observed in other rhodopsins without an internal proton donor to the Schiff base, but it accumulates an intermediate with an even longer lifetime reflecting slow recovery of the initial state.


Assuntos
Channelrhodopsins/química , Fotoquímica , Concentração de Íons de Hidrogênio , Análise Espectral/métodos
11.
ACS Nano ; 11(2): 1273-1280, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28103440

RESUMO

The fusion of lipid membranes is opposed by high energetic barriers. In living organisms, complex protein machineries carry out this biologically essential process. Here we show that membrane-spanning carbon nanotubes (CNTs) can trigger spontaneous fusion of small lipid vesicles. In coarse-grained molecular dynamics simulations, we find that a CNT bridging between two vesicles locally perturbs their lipid structure. Their outer leaflets merge as the CNT pulls lipids out of the membranes, creating an hourglass-shaped fusion intermediate with still intact inner leaflets. As the CNT moves away from the symmetry axis connecting the vesicle centers, the inner leaflets merge, forming a pore that completes fusion. The distinct mechanism of CNT-mediated membrane fusion may be transferable, providing guidance in the development of fusion agents, e.g., for the targeted delivery of drugs or nucleic acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...